Local aromaticity of the six-membered rings in pyracylene. A difficult case for the NICS indicator of aromaticity.
نویسندگان
چکیده
In this work, we have analyzed the local aromaticity of the six-membered rings (6-MRs) of planar and pyramidalized pyracylene species through the structurally based harmonic oscillator model of aromaticity (HOMA), the electronically based para-delocalization index (PDI), and the magnetic-based nucleus independent chemical shift (NICS) measurements, as well as with maps of ring current density. According to ring currents and PDI and HOMA indicators of aromaticity, there is a small reduction of local aromaticity in the 6-MRs of pyracylene with a bending of the molecule. In the case of NICS, the results depend on whether the NICS value is calculated at the center of the ring (NICS(0)) or at 1 A above (NICS(1)(out)) or below (NICS(1)(in)) the ring plane. While NICS(1)(out) values also indicate a slight decrease of aromaticity with bending, NICS(0) and NICS(1)(in) wrongly point out a large increase of aromaticity upon distortion. We have demonstrated that the NICS(0) reduction in the 6-MRs of pyracylene upon bending is due to (a) a strong reduction of the paratropic currents in 5-MRs and (b) the fact that, due to the distortion, the paratropic currents point their effects in other directions.
منابع مشابه
Evaluation of the Aromaticity of a Non-Planar Carbon Nano-Structure by Nucleus-Independent Chemical Shift Criterion: Aromaticity of the Nitrogen- Doped Corannulene
Substitution of two or four carbon atoms by nitrogen in the corannulene molecule as a carbon nanostructure was done and the obtained structures were optimized at MP2/6-31G(d) level of theory. Calculations of the nucleus-independent chemical shift (NICS) were performed to analyze the aromaticity of the corannulene rings and its derivatives upon doping with N at B3LYP/6-31G(d) level of theory. Re...
متن کاملDFT Study of the Six-Membered Heterocyclic SinN6-nHn (n = 0-6): Stability and Aromaticity
One main group of organic chemistry is related to the aromatic compounds. In the present work, we replaced the CH group of benzene by silicon and nitrogen analogues. Then, Density functional theory (DFT) calculations were carried out for six-membered heterocyclic Si-N aromatic rings. Full geometry optimizations were performed in gas-phase, and at B3LYP level using 6-311++G(d,p) and CBSB7 basis ...
متن کاملLocal aromaticity of [n]acenes, [n]phenacenes, and [n]helicenes (n = 1-9).
The local aromaticity of the six-membered rings in three series of benzenoid compounds, namely, the [n]acenes, [n]phenacenes, and [n]helicenes for n = 1-9, has been assessed by means of three probes of local aromaticity based on structural, magnetic, and electron delocalization properties. For [n]acenes our analysis shows that the more reactive inner rings are more aromatic than the outer rings...
متن کاملAn insight into the local aromaticities of polycyclic aromatic hydrocarbons and fullerenes.
In this work we quantify the local aromaticity of six-membered rings in a series of planar and bowl-shaped polycyclic aromatic hydrocarbons (PAHs) and fullerenes. The evaluation of local aromaticity has been carried out through the use of structurally (HOMA) and magnetically (NICS) based measures, as well as by the use of a new electronically based indicator of aromaticity, the para delocalizat...
متن کاملThe delocalization index as an electronic aromaticity criterion: application to a series of planar polycyclic aromatic hydrocarbons.
This work introduces a new local aromaticity measure, defined as the mean of Bader's electron delocalization index (DI) of para-related carbon atoms in six-membered rings. This new electronic criterion of aromaticity is based on the fact that aromaticity is related to the cyclic delocalized distribution of pi-electrons. We have found that this DI and the harmonic oscillator model of aromaticity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of organic chemistry
دوره 69 22 شماره
صفحات -
تاریخ انتشار 2004